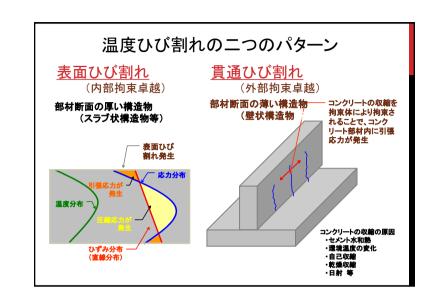
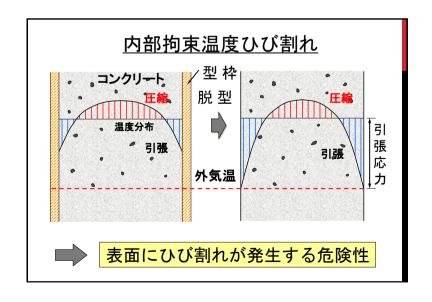

温度ひび割れのメカニズムと対策

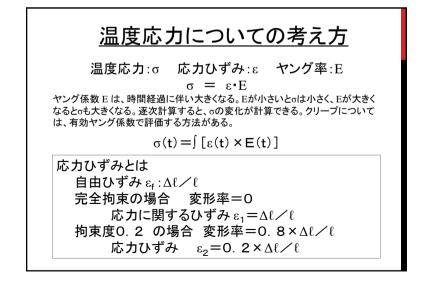
近未来コンクリート研究会 特別講演 十河 茂幸

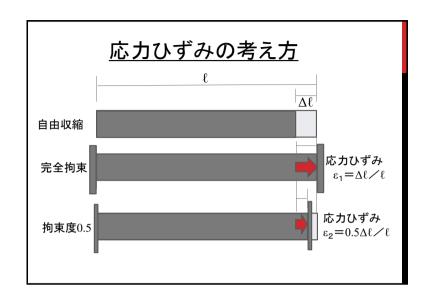
▶ 初期ひび割れは収縮が主要因 収縮 (乾燥・温度収縮) 均束 (既設部材・鉄筋等)

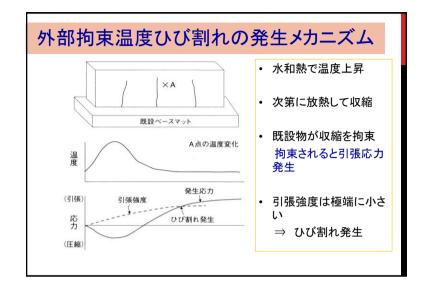
温度ひび割れの発生メカニズム

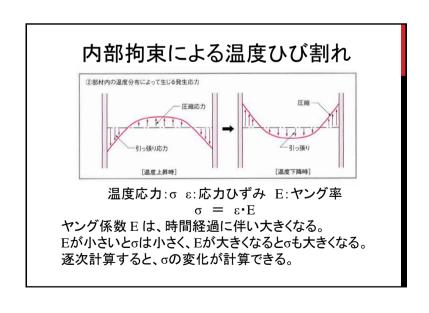

コンクリートは、材料の特性として収縮する。

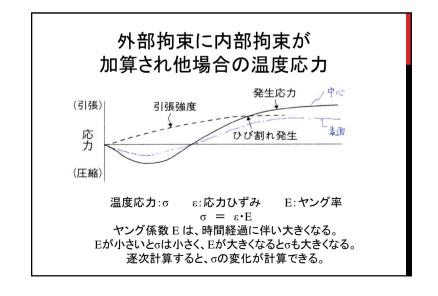


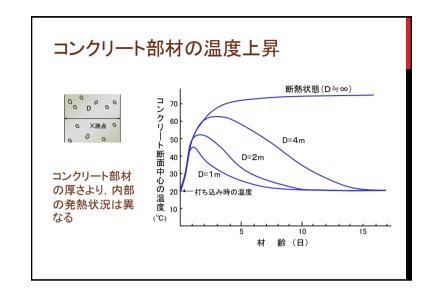

先に施工された構造物が後の施工で構築されるコンクリートの収縮を拘束すると、引張応力が発生。これに対して引張強度が小さい(伸び能力が小さい)ためひび割れが生じる。

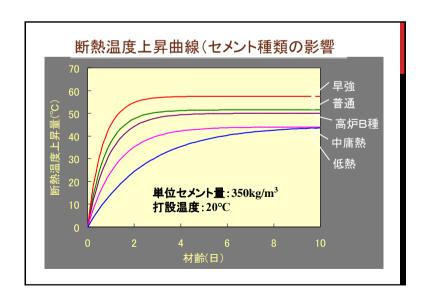

収縮を拘束された場合のひび割れ発生メカニズム (a) 初期状態 • コンクリートは収縮する。 セメントの硬化収縮 乾燥して収縮 (b)拘束無し 水和発熱が放熱して収縮 応力発生なし 既設物などが収縮を拘束 (c)拘束有り1/ 拘束されると引張応力発生 収縮拘束応力σ..発生 • 引張強度は極端に小さい (d)拘束有り2 (時間経過後) ⇒ ひび割れ発生 ひび割れ発生







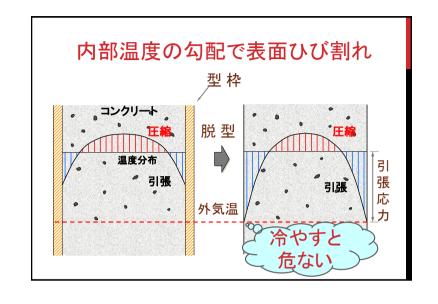


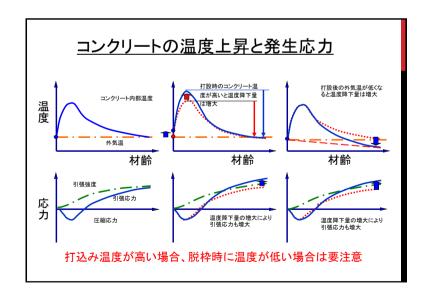


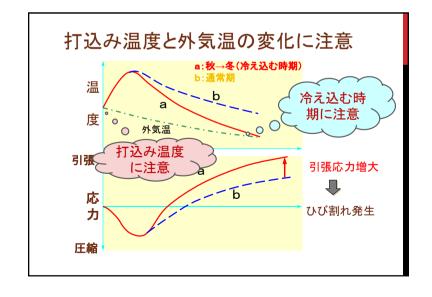
> 温度ひび割れの抑制対策

- ✓ 単位セメント量の低減
 - ⇒ 単位水量の減じられる材料・配合
- ✓ 低発熱セメントの使用
- ✓ 温度上昇の抑制
 - ⇒ プレクーリング、夜間打設など
- ✓ ゆっくりとした温度低下
 - ⇒ 保温養生、長期間の型枠存置など

配合要因とひび割れの関係 W/C 乾燥 温度 自己 C ∞ T 収縮 収縮 収縮 (%) (kg/m^3) (kg/m^3) (°C) 65 254 大 小 小 44 55 300 51 45 165 367 62 35 471 79 大


流動性を高める ⇒ 絶対粗骨材容積を減じる ⇒ 収縮因子が増大 ⇒ ひび割れ発生確率増大


施工に影響される初期ひび割れ


メカニズムは理解できても、 初期ひび割れの抑制は困難

施工時期の影響、施工方法の影響 材料・配合・製造・施工の管理方法 設計で考慮しても、<u>制御は困難</u>

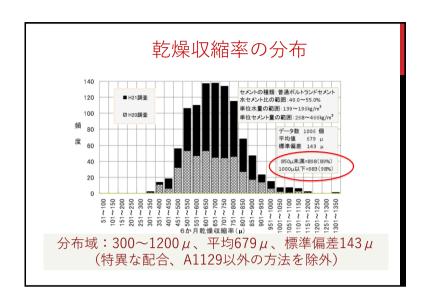
▶ ひび割れ抑制の施工面での対応

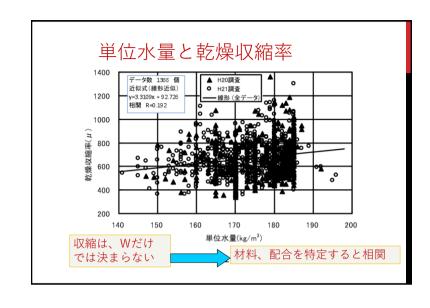
- ✓ 温度ひび割れの対応
 - ⇒ 外気の影響から保護(シートの利用)
- ✓ 事前の予測の範囲を認識
 - ⇒ 施工管理の意識(計画との違いを把握)

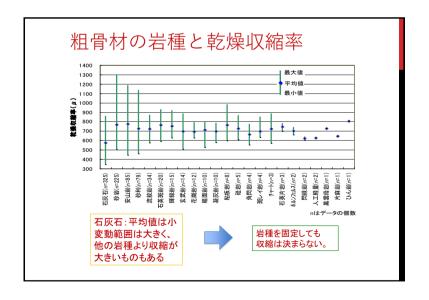
対策が困難な場合 1) 誘発目地の利用

- 2) 許容ひび割れ幅を明確にする
- 3)補修を前提とする

温度ひび割れ以外の初期ひび割れの補足


- 乾燥収縮ひび割れは、部材が厚いと検討しなく てよいかっ
- 自己収縮の評価はどのようにすればよいか?
- 鉄筋の補強でひび割れは低減できるか?
- ■トンネル二次覆工のひび割れはどのような考え ればよいか?


乾燥収縮による初期ひび割れ

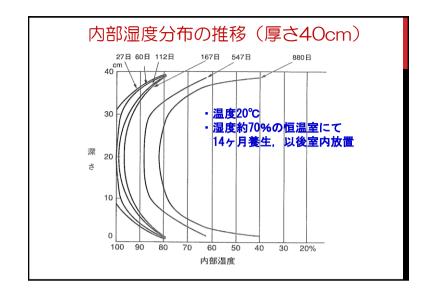

- ✓ 乾燥はコンクリートの表面から。
- ✓ 部材の厚さが小さい場合に発生。
- ✓ 内部拘束が卓越する。
- ✓乾燥するには時間がかかる。
- ✓ 建築では漏水が問題となる場合が多い。

乾燥による収縮のメカニズム

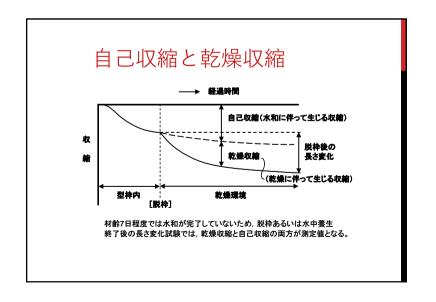
- ✓ セメントペーストの収縮(乾燥収縮・自己収縮) セメントゲル、未水和のセメント粒子、 毛細管空隙、ゲル空隙等の毛細管空隙の収縮
- ✓ セメントペーストの収縮を拘束する骨材 骨材のヤング率が小さいと収縮が増加
- ✓ 骨材の乾燥収縮 骨材中の毛細管空隙の水分逸散による収縮

乾燥収縮ひび割れの抑制対策

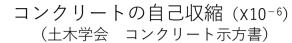
- ✓ 乾燥収縮率の抑制 ⇒単位水量の低減ではない。
 - ⇒ 良質の骨材の使用
 - ⇒ 良質の混和剤の使用
 - ⇒ 変動の少ない品質管理
- ✓ 乾燥による逸散水の抑制
 - ⇒ 十分な湿潤養生
 - ⇒ ゆっくりと反応させる


乾燥収縮ひずみとひび割れ

コンクリートの収縮ひずみの許容値・・・ 800 μ 乾燥環境による乾燥収縮ひずみ ・・・400 μ 収縮を拘束する構造物の拘束度 ・・・200 μ

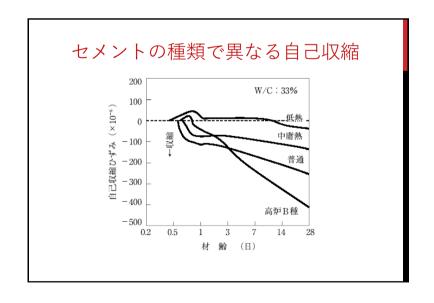

コンクリートの伸び能力(クリープを含む)・・・200 μ

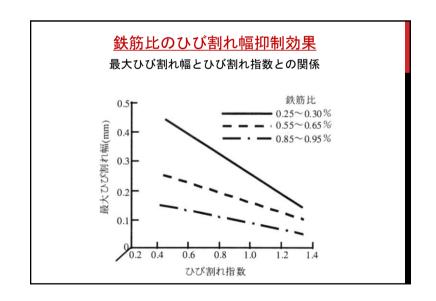
⇒ 大きなひび割れは生じない基準値



硬化収縮(自己収縮)は伏兵

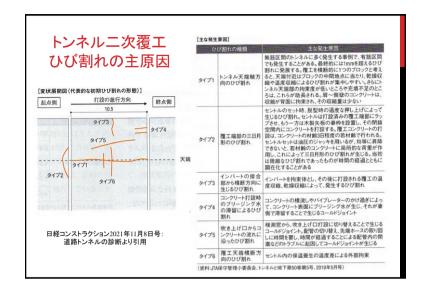
- ✓ 自己収縮だけではひび割れは生じない。
- ✓ 自己収縮率は、単位セメント量に依存。
- ✓ 乾燥収縮率は自己収縮を含む。
- ✓ セメントの効果速度が速いと大きくなる。
- ✓ つまり、セメントの種類の影響がある。

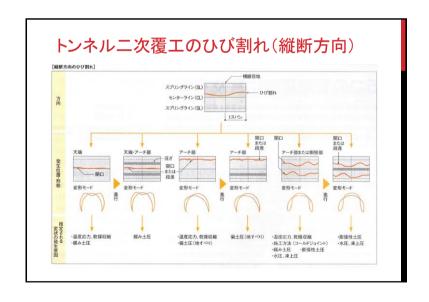


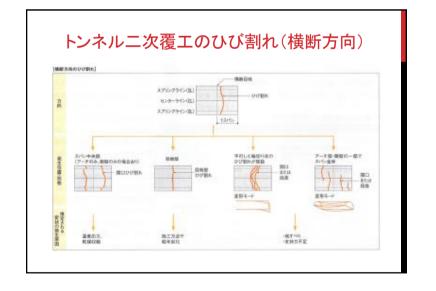


水セメント比	材 齢*(日)					
(%)	1	3	7	14	28	90
50	0	30	80	90	100	120
40	0	70	100	110	120	170
30	50	100	170	210	250	280
20	100	320	360	380	400	470

* 凝結時を原点とする




▶ 収縮を減じるには、WとCを削減


- ✓ 乾燥収縮を減じるには ⇒ 乾燥収縮率の低減
- ✓ 自己収縮を減じるには ⇒ C低減
- ✓ 温度応力を減じるには ⇒ C低減

同一W/Cなら、単位水量の低減が効果的

コンクリートの自己矛盾 ⇒強度発現を求めると ひび割れが発生

